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ON PROBABILISTIC INTERPRETATION
OF FUZZY NUMBERS

The paper is devoted to probabilistic interpretation of fuzzy numbers. The relationships between
the fuzzy numbers and the interval random set are studied. The ordering of fuzzy numbers based on
the stochastic dominance and the defuzzification problem based on the functional representation of
preference relation and random simulation are presented. The problems of approximation of the fuzzy
numbers by the crisp intervals and trapezoidal fuzzy numbers are investigated.

1. Introduction

This paper is devoted to some problems connected with relationships between the
fuzzy numbers and the interval random sets. Generally, we cannot use the probabilis-
tic interpretation of the value of membership function of the fuzzy set A. Usually, we
treat the value ua(X) as the possibility that x belongs to A. It is a degree of membership
of this point in a fuzzy set. But some authors [6][8] use probability interpretation in
specific situations. The relationships between the fuzzy sets and the random sets ena-
ble them to do it. They interpret the degree of membership ua(x) as probability that
the point x belongs to some random set S.

In section 2, the interval random sets and the relationships between the fuzzy
numbers and these random sets are investigated. The ordering of fuzzy numbers
based on the stochastic dominance is studied in section 3. Section 4 is devoted to an
order defined on the trapezoidal fuzzy numbers, the special case of fuzzy numbers
with the linear membership function. The defuzzification of fuzzy numbers based
on the functional representation of order relations and the random simulation is
discussed in section 5. In section 6, we study the approximation of fuzzy number by
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other fuzzy numbers with simpler membership functions — the intervals and trape-
zoidal fuzzy numbers.

2. Interval random sets

First, we recall some definitions and notions connected with fuzzy numbers. The
fuzzy number A is a normal and convex fuzzy subset of real line with upper semi-
continuous membership function za: R — [0, 1]. Every r-level Ar = {x: ua(x) > r},
where re(0, 1], of such a fuzzy set is a closed interval in this case. We can describe
the membership function of the fuzzy number A as follows:

0 X<a, or a, <X

fa(X) a <x<a,
Ha(X) = 1

ga(X) a;<x<a,

The functions fa and ga are called the left and right sides of the fuzzy number A
[8]. For the sake of simplicity, we assume in this paper that these functions are con-
tinuous and strictly monotone. The function fa is increasing and ga is decreasing.
Moreover, we assume that support of the fuzzy number A, i.e., the set Ay =
{x:u,(x)>0}, where D is the closure of the crisp set D, is the bounded interval
[a1, a4]; generally it can be unbounded.

The fuzzy number with linear sides is called a trapezoidal fuzzy number. We
denote this fuzzy set by T(ai, a2, as, as). For a, = as we obtain a triangular fuzzy
number.

The random set S is a measurable mapping from probability space (£, 3, Pr) to
some class of the subsets of space X. In our situation, we assume that space X is a real
line R and this class is a family of all closed intervals of real line., i.e., S(®) = [S1(®),
S2(w)] [8]. This random set is called the interval random set. We can interpret every
interval random set as a random variable taking value in IR? = {(x,y): X, yeR, x <y} or
as a pair of two random variables S, S..

The fuzzy number A induces a class of random sets satisfying condition Pr(x € S)
= ua(x). We can treat the value of membership function ua(x) as the probability that
element x belongs to the random set S. We distinguish a random set Sa = Ga)U gener-
ated by the level multifunction Ga(r) = {X: za(x) > r} and a random variable U defined
on the unit interval. When random variable U is uniformly distributed on [0, 1] we
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obtain a consonant random set generated by a fuzzy number A. Such a random set
satisfies the condition Pr(x € S) = ua(X). For other random variables that are not uni-
formly distributed, this formula is not satisfied.

The random variables Sa1, Aa2 induced by the consonant random set Sa are equal

to S, =faoU and S,, =g, U, respectively. The expected value of this interval
random set is called an expected interval of fuzzy number A [5], [8], i.e.,

EI(A) = [E(Sa1), E(Sa2)] = {az _TfA (x)dx, as + TgA (x)dX} =

[jfj(t)dt , jg;(r)dt} .
0 0

It does not depend on the member of the class of interval random sets generated by
fuzzy number A [8]. The center of such an interval is called an expected value of A
and is denoted by EV(A), i.e.,

EV(A) = %(E(sm) +E(Sp2)),

and the ends of this interval are called the expected lower and upper values. The ex-
pected interval and expected value of trapezoidal fuzzy number A equal
EI(A) = [(a1 + a2)/2, (as + as)/2],

EV(A) = (a1 + a2 + as + as)/4.

3. Natural ordering of fuzzy numbers
based on the stochastic dominance

There are many methods of ordering fuzzy numbers [1], [9], [11], [14]. We inves-
tigate the methods based on the random set representation of such fuzzy sets. First, we

introduce the natural order <;:
Az B o fa(x) 2 fg(X) and g (x) < gg(X),

where A, B are the fuzzy numbers and
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0 x<a 1 x<a,
fi)=1/4(x) a<x<a,, gy(x)=1g,(x) ay<x=<ay.
1 a, <x 0 a, <x

It is easy to see that it is the partial order. There exists a class of noncomparable
fuzzy numbers in this order relation, e.g., when a; <bs <bs<asorai; <b;<h;<ay.
Now, we will study the connection between this natural relation <; and the stochas-

tic dominance. First, we will investigate the left sides f of the fuzzy numbers only and
assume, for simplicity, that a; > 0. The cumulative distribution function of the random
variable Sa 1 generated by the consonant random set Sa is equal to the left side extension

f 4 (x) of this fuzzy number [8]. We know [11], [13] that a random variable Y stochasti-

cally dominates a random variable X (X <s Y) if Fx(x) > Fv(x) for all x > 0, where Fx(x),
Fy(x) are the cumulative distribution functions of random variables

X and Y. This fact implies that if f(x) > f,(x), then Sa1 <s Sg1. On the other hand,
when we have the following relation between the right sides of the fuzzy numbers
Aand B: g’,(x) < gx(x), then Sa, <s Sg2. Therefore, 1 — g’,(x) is the cumulative dis-
tribution function of the random variable Sa,. We arrive at the following conclusion.

Theorem 1. The natural order <; between the fuzzy numbers is the intersection
of two stochastic dominances between the sides of these fuzzy numbers, i.e.,

A <; B < Sa1<«Ss1and Sa2 <s Ss.
We can construct, in a similar way, a family of relations ordering the fuzzy num-

bers based on the higher degree stochastic orders. First, we recall the definition of the
n-degree stochastic order [11], [13]. Denote 'G, (x) =1 - F,(x) and

"G, (x) :j"GX(z)dz forn=1,2, ...,

where X a random variable and x > 0. A random variable Y dominates a random varia-
ble X in n-degree stochastic order (X <sn Y) if E(X¥) <E(Y¥) fork=1,2,...,n—1and
"G, (x) < "Gy(x) forall x > 0. When E(X¥) < E(Y¥) for all k, we say that Y dominates
X in stochastic order of degree infinity (X <s» Y).

We can define an n-degree natural order <, between fuzzy numbers A and B, us-

ing the above stochastic orders:

A =q B < Sa1<snSea and Sa2 <sn Sg2.
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These ordering relations are the partial orders. The n-degree natural order is
a weaker relation than (n — 1)-degree natural order. If we use n-degree natural order,
then many more pairs of fuzzy numbers can be ordered.

The exponential order <. defined as

X< Y < E(e”)<E(e”)

for all &> 0, is a weaker order than <, for any n.

o0

It is easy to see that E(X) = j(l—FX(t))dt, where X > 0, then we can define the
0
second degree natural order in the following way

A<,B < of(l— fA(t)dt < T(l— fg (t))dt and Tg*A(t))dt < Tg’g(t))dt

X

for any x > 0.

4. Trapezoidal fuzzy numbers

The trapezoidal fuzzy numbers are the simplest case of fuzzy numbers. Their sides
are linear. In this situation, the natural order is defined by the following formula:

Ajl B < ai<bi, a<hy, az<bs, as<ba.

We see that the relation between two trapezoidal fuzzy numbers depends on the
parameters a; and bi, where i = 1,2,3,4, only. This is a simpler product order on IR* =
{(x1, X2, X3, Xa): Xi€R, X1 < X2 < X3 < Xa).

Example 1. Let A=T(3,5,6,7),B=T(4, 6,8,9) and C =T(2, 8, 9, 10). We ob-
tain the relation A 1 B, but the pair of fuzzy numbers A and C are not in this relation.

Now, we investigate the second degree natural order ], between the trapezoidal

fuzzy numbers. First, we study the left sides f of them. Let za(x) = j(l—fA(t))dt.

Then we obtain

(a,+a,)/2—x 0<x<aq

2
m(x) = Loy =0 a<x<a,.
2(a; —a)

0 a,<x
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We know from the definition of the second degree of stochastic order that
S1a<s2818 & m(X) < mw(X)

for any x > 0. If a trapezoidal fuzzy number B dominates a trapezoidal fuzzy number
A in the second degree natural order, i.e., A <, B, then the parameters of such fuzzy
numbers satisfy two conditions: a; + a2 < by + by and a2 < b,. Therefore, 7za(0) = (a1 +
a2)/2 < m(0) = (b1 + b2)/2, m(az) = 0 < zw(a2) and zs(X) is a continuous, decreasing
function. On the other hand, these two conditions imply that 7za(x) < z&(x) for any x > 0.

This fact emerges from the properties of functions z(x) and zs(x). The results for
right sides g are similar to those for left sides.

Theorem 2. Let A, B be fuzzy numbers, then

Ajz B < ai+a<bhi+hyax<byandas+ as <hs+ by, as <ba. (1)

The order =, is a stronger relation than order =<, , then there exist pairs of trape-
zoidal fuzzy numbers, which satisfy relation <, , but do not satisfy relation <, .

Example 2. We have A <, C, where A and C are from example 1.

We can show in a similar way that the higher degree natural orders <, , where n > 2,
and exponential order <, are characterized by the same two conditions (1). Then, it is

sufficient to use orders <, and =<, only for the trapezoidal fuzzy numbers.

Example 3. Let A = T(3, 8, 10,12) and B = T(1, 9, 10,12). If A <, B then

aa, aa

€ ~®  But gm(0.2)

a(a, —a)
= 3.131 > ¢8(0.2) = 3.018 and ¢s(0.5) = 20.05 < ¢(0.5) = 20.09. These fuzzy num-
bers do not satisfy the relation of the exponential order.

E(e”*) < E(e“™*) forall a>0. Let gn(a) = E(e“™) =

5. Defuzzification

The method of ranking fuzzy numbers presented in the previous sections generates
a partial order. There is some class of uncomparable fuzzy numbers in these cases.
Now, we present some examples of the weak orders of the fuzzy numbers, i.e., the
complete and transitive relations. The completeness ensures that every pair of the
fuzzy numbers is comparable in this relation.



On probabilistic interpretation of fuzzy numbers 67

The more natural relation is the order ]Je generated by the expected values of fuzzy
numbers [9], i.e.,

Al B < EV(A) <EV(B).

Example 4. Let A =T(3, 8, 10,12) and B = T(1, 9, 10,12), then EV(A) = 8.25 and
EV(B) = 8. We see that A ]e B in this case, but they are uncomparable in the exponen-
tial order.

We can generalize this order introducing a relation based on the expected interval
EI(A) of the fuzzy number. This order, denoted by symbol ], is generated by a con-
vex combination of the expected lower and upper values, i.e.,

A1:B < AE(Sa1) + (1 - D)E(Sa2) < AE(Sa 1) + (1 — A)E(Ss2), (2)

where 0 < A < 1. The relation ], is the weak order, too.

In the decision making problems under fuzzy environment we must compare the
expected fuzzy utilities or payoffs. The value of the coefficient A reflects the tendency
of the decision maker towards risk and assurance in this situation. We can also model
his her tendency to value the membership function, the degree of possibility, by some
distortion function ¢. It is an increasing function ¢: [0, 1] — [0, 1], satisfying condi-
tion: @(0) = 0, (1) = 1. We replace the expected values of the random variables
E(Sa)), where i = 1, 2, with expected values with respect to the distortion probabilities
E,(Sa,) in this case, where

© 1
Eo(Sa1) = [0 £,(e)dx = [(1= £ (o),
0 0

0 1
Eo($s2) = [o(f,(xNdx = [9a(Nde(r).
0 0

These integrals are strictly connected with Yaary’s dual theory [15], which is an
alternative to the classical utility theory. We denote the order between fuzzy num-
bers generated by the convex combination of modified expected values E,(Sa;) by
symbol ], ,.

Let C = A + B be the arithmetic sum of fuzzy numbers A and B, then [8]

JE O = £+ 1 (1),

g (N =g, ("N +gs ().
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We see, using the above properties, that the relation ],,, is consistent with the
arithmetical sum of fuzzy numbers.

The expected value and the convex combination of the expected lower and upper
values play the role of functional representations V(A) of the above weak orders, i.e.,
there exists a real function V defined on the class of fuzzy numbers which satisfies the
following condition:

A=< B < V(A)<V(B).

On the other hand, every such functional V defined on the class of fuzzy numbers
induces an order relation on this class.

Using this functional representation V, we can generate a real number V(A) for
every fuzzy number A. This is an example of the more general problem that is, defuzz-
ification, where the fuzzy number is replaced by the real number. We can apply de-
fuzzification not only to the ordering of fuzzy numbers, but it can be used in the fuzzy
control and decision making problems [16], [9].

Using simulation methods based on the random set representation of fuzzy
numbers we obtain other defuzzification methods. We present a two-step proce-
dure [4, 3]. First, we generate a random set Sa induced by the fuzzy number A and
second, we generate the number xa from this subset. In the case of the consonant
interval random set Sa = Ga°U this procedure is equivalent to the following two-
step simulation:

Step 1: Generate a value r of the uniform random variable U over (0, 1].

Step 2: Generate a value xa of some random variable Z over the level set Ga(r).

We assume that these random variables are independent.

With Z being a uniform random variable we obtain a simpler procedure of generat-
ing a real number from the random variable [4]

Q=fa(U) + T(ga (V) - fa (V).

where T and U are independent uniform random variables over [0, 1] and (0, 1]. The
expected value of this random variable is equal to the expected value of the fuzzy set
A: 4], [8]

1
EQ = 5 (/70 + &7 ) = EVEA),
0

If we want to model the proclivity to risk in decision-making problems, we can use
other than the uniform random variable Z. For instance, we can apply the triangular
distribution function Z with the following density function
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2(x—sy)
sy —5,)°

p(X) =975 |
2=y
(I-A)(s, — S1)2 (1=A)s + 45, <x <5,

where Ga(r) = [s1, S2] and A € [0, 1] is an optimism index. The pessimistic, risk averse
decision maker chooses the parameter 4 = 0 and the optimistic one, i.e., the risk lover
takes 4 = 1. The values of A between 0 and 1 correspond with intermediate proclivity
to risk. The cumulative distribution function is

s <x<(1=A)s, + 1s,

2
%(“Slj s, <x < (1= A)s, + 4s,
S, — 8§
E(X)Z 21 1 2 .
— 2T (1= A)s +As, <x <,
1-Als, —s

LetO<t<A Thenx=s, + JAr (s2 —s1) is a solution of equation t = Fr(x). For A <
t <1, we obtain x = s — \J(1—-A)(1—1¢) (S2 — s1). Using the above investigation we can
generate in this case, a single value from conditional random variable
) {fA1(U)+MT<gA‘(U)—fA1(U)> 0<T <2
g ) =J1-D(1-T) (g V)~ fi'U) A<T<1

where T and U are independent uniform random variables over [0, 1] and (0, 1]. The
expected value of this random variable is

E(Q) =(4- %(W 1= (- 2)))E(Sny)

(- A+ %(ﬂ” 1= 231= 7)) )E(Sa).

For a risk averse decision maker, 4 = 0, we obtain E(Q) = %E(SM) + %E(SA,Z)

and for a risk lover, 4 = 1, we have E(Q) = % E(Sa1) + %E(SA,Z). The expected value

E(Q) is equal to the expected value of fuzzy number EV(A) for a neutral decision
maker, i.e., when 4 =0.5.
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6. Approximation of fuzzy number

Now, we study the problem of approximation of a fuzzy number by another fuzzy
number with a simpler membership function. The fuzzification is an extreme example
of such a problem. We approximate the fuzzy number by the real number in this case.

Such approximation done by the proper interval is another example of this prob-
lem. To that end we can use the expected interval. Then every fuzzy number A is rep-
resented by the interval EI(A). The width w(E(A)) of the expected interval is equal to
the width w(A) of this fuzzy number, i.e., [2]

WA) = [ py(¥)dx = E(Saz) — E(Sa) = W(E(A)).

—00

Chanas in [2] introduced another interval approximation of fuzzy number. He con-
structed the interval I, of the same width as the fuzzy number A, which is located
nearest to this fuzzy number with respect to the Hamming distance, i.e.,

1) w(lo) = w(A),

2) H(lo, A) = mlinH(I,A)

where | is an interval satisfying equality 1) and H(l, A) is the Hamming distance be-
tween | and A:

H(LA) = [ ] ()= p2a (0] dx

where z4(x) is a characteristic function of interval 1. The first point zo of this optimal
interval satisfies the following condition [2]

fa(zo) = ga(zo + W(A)). 3)

Chanas showed that for fuzzy numbers of L-R type, when the left shape function L
is equal to the right shape function R, and only for such a fuzzy number, this optimal
approximation interval is the expected interval, i.e., lo = EI(A). The membership func-
tion of a fuzzy number A of L-R type has the following form:

a,—Xx
Ll 2 x<a,
a4

M (x)=41 a, <x<ay,
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where L and R are continuous, non-increasing functions, defined on [0, +©), strictly
decreasing to 0, when they are positive and fulfilling the conditions L(0) = R(0) = 1,
anp, ,BA > 0.

The above property, i.e., lo = EI(A), is satisfied for the general symmetric fuzzy
numbers, too. For this case, ga(X) = fa(a: + a4 — x). Using equation (3) and the sym-
metry of A, we obtain

_ 4 ta, —w(A) = E(Sa2).

Then lo = EI(A).
We may obtain the interval with a smaller Hamming distance to fuzzy number A

than Chanas optimal interval lo, when we remove the assumption about the equality of
width, i.e., w(lo) = w(A).

Example 5. Let A be a fuzzy number with the following sides:

fA(X)=1—i(x—2)2 0<x<2,
ga() =1- (x—3)° 3<x<4,

The expected interval equals EI(A) = [%3%} It is Chanas optimal interval lo,

too, because the left L and right R shape functions are the same. Let J =
[2-+/2,3++/0.5]. Then we obtain H(lo, A) = 0,5926 and H(J, A) = 0,5858. So, the
Hamming distance for the Chanas interval lo is greater.

Now, we investigate the problem of approximation of the fuzzy number A by the
trapezoidal number T. We propose one attempt based on the probabilistic interpreta-
tion of fuzzy numbers. We want to choose the trapezoidal fuzzy number T = T(ty, to, ts,
t4) such that the induced random variables have the same expected value and variance,
i.e.,

E(Sa1) = E(St1) =my,  E(Sa2) = E(St2) = my,

V(SAyl) = V(STyl) = 0'12 V(SA,z) = V(ST,z) = 0'22 .

The sides of the trapezoidal fuzzy number are linear, then the random variables St
are uniformly distributed on [ti, t2] and [ts, ts]. For the left sides of the fuzzy number A
we obtain the following equations:

L+t =2m
(1) =120}
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Example 6. Let fa(x) = 2x — x?, where 0 < x < 1, then m; = 1/3 and o = 1/18. We
obtain the following solutions of the above equations:

t = 1—\ﬁ ~ 0075 t= 1+\ﬁ ~0.742.
3 Ve 3 Vs

In some situations, such a trapezoidal fuzzy number may not exist. For instance,
for triangular fuzzy numbers with convex sides.

Example 7. Let fa(x) = x2, where 0 < x < 1 and ga(x) = (x — 2)?, where 1 < x < 2.

Then we obtain
w=2 L= 2 [Liron
3 6 3 6

tszi—\/I ~0.925, tzzi-‘r\/I
3 6 3 6

and t; > t3 in this case. There is no such trapezoidal fuzzy number.
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Probabilistyczna interpretacja liczb rozmytych

Praca dotyczy probabilistycznej interpretacji liczb rozmytych. Badane sa zalezno$ci zachodzace mig-
dzy rozmytymi liczbami a zbiorami losowymi. Stopien przynaleznosci ua(x) jest interpretowany jako
prawdopodobienstwo, ze element X nalezy do przedzialowego zbioru losowego indukowanego przez
poziomy rozmytego zbioru A. Przedzialowy zbior losowy moze by¢ interpretowany jako para zmiennych
losowych, ktorych rozktady sa generowane przez strony rozmytego zbioru A.

Powyzsza interpretacja probabilistyczna jest wykorzystana do porzadkowania rozmytych liczb na
podstawie stochastycznej dominacji. Pokazano, ze naturalny porzadek migdzy rozmytymi liczbami jest
cze$cig wspolng dwoch dominacji stochastycznych zachodzacych migdzy stronami poréwnywanych
rozmytych liczb. W pracy rozpatrywane sg naturalne porzadki n-tego stopnia oraz przypadek trapezoidal-
nych liczb rozmytych. Oméwiono problem ,,defuzzyfikacji”, oparty na reprezentacji funkcyjnej relacji
preferencji. Warto$¢ oczekiwana rozmytej liczby, kombinacja wypukta dolnej i gornej wartosci oczeki-
wanej oraz kombinacja znieksztatconych wartosci oczekiwanych — sg przykladami tych reprezentacji
funkcyjnych. Inna metoda ,,defuzzyfikacji” oparta jest na losowej symulacji. Przedstawiony jest tez pro-
blem aproksymacji rozmytej liczby przedziatem oraz trapezoidalng rozmytg liczbg. Oczekiwany przedziat
rozmytej liczby oraz trapezoidalna rozmyta liczba z t3 samg wartos$cia oczekiwang i wariancja traktowane
s jako przyktady tej aproksymacji.



